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In a previous paper, we showed that a discrete version of the S�–construction gives
an equivalence of categories between 2–Segal sets and augmented stable double
categories. Here, we generalize this result to the homotopical setting, by showing
that there is a Quillen equivalence between a model category for 2–Segal objects and
a model category for augmented stable double Segal objects which is given by an
S�–construction. We show that this equivalence fits together with the result in the
discrete case and briefly discuss how it encompasses other known S�–constructions.
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Introduction

Waldhausen’s S�–construction, first described in [32], provides a way to define algebraic
K–theory via classifying spaces of categories of certain diagrams, so that its output
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is a simplicial space. While this construction was defined in the more general setting
of categories with cofibrations and weak equivalences (often now called Waldhausen
categories) it provides a different way to think about the algebraic K–theory of exact
categories, originally constructed by Quillen [29].

Independently, Dyckerhoff and Kapranov [11] and Gálvez-Carrillo, Kock and Tonks [16]
showed that the simplicial spaces obtained as the output of an S�–construction for exact
categories have the additional structure of a 2–Segal space or decomposition space. It
is particularly interesting that both sets of authors identify the output of the Waldhausen
construction as a crucial example, although their approaches to this structure are quite
different. The main starting point for our work was the following question:

Question Is this source of examples exhaustive? In other words , does every 2–Segal
space arise from such a construction?

The main goal of this paper is to give a positive answer to this question for a general-
ization of the S�–construction.

To give a brief overview, first recall that a Segal space is a simplicial space X such
that the Segal maps

Xn!X1
h
�X0
� � �

h
�X0

X1„ ƒ‚ …
n

are weak equivalences for n� 2. We can think of a Segal space X as having a space
of objects X0 , a space of morphisms X1 , and up-to-homotopy composition which can
be defined by the span

X1
h
�X0

X1
'
 �X2!X1;

since the first arrow is a weak equivalence. In other words, a Segal space is a topological
category up to homotopy.

As a generalization, a 2–Segal space is a simplicial space X such that certain maps

Xn!X2
h
�X1
� � �

h
�X1

X2„ ƒ‚ …
n�1

are weak equivalences for n� 3. In this setting, we still have a space of objects X0 and
a space of morphisms X1 , but we need not have composition of all possibly composable
pairs of morphisms, since the first map in the span

X1
h
�X0

X1 X2!X1
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2–Segal objects and the Waldhausen construction 1269

is no longer necessarily invertible, even up to homotopy. However, we can think of a
2–Segal space as having a multivalued composition, where an element of X1 �X0

X1

can be lifted to any preimage in X2 , which is in turn sent to its image in X1 . Thus,
two potentially composable morphisms could have no composite at all (if the preimage
in X2 is empty) or multiple composites (if the preimage has multiple elements). The
homotopy invertibility of the 2–Segal maps given above is used to prove that this
multivalued composition is homotopy associative. We thus think of the structure of a
2–Segal space as that of a category with multivalued composition up to homotopy.

In [11], Dyckerhoff and Kapranov include an additional assumption, and call a 2–Segal
space unital if composition with identity morphisms always exists and is unique up to
homotopy. However, a recent surprising result of Feller, Garner, Kock, Underhill-Proulx
and Weber [12] shows that every 2–Segal space is unital. We thus frequently omit the
term “unital” unless we find it useful for clarification.

In previous work [6] we considered the motivating question above in a discrete setting,
in which the output was a simplicial set, rather than a simplicial space. We gave a
positive answer, in that we showed that the category of 2–Segal sets is equivalent to the
category of augmented stable double categories; the equivalence is given by a discrete
S�–construction and its inverse by a path construction. While illuminating in its own
right, this discrete setting is insufficient to encompass even the classical example of
exact categories, for which we need to work homotopically.

In particular, we expect not an equivalence of categories, but instead an equivalence of
homotopy theories, given by a Quillen equivalence of model categories. Indeed, we
need not restrict ourselves to working solely in the context of spaces, but can consider
2–Segal objects in any sufficiently nice model category C . By a result of Dyckerhoff
and Kapranov, there is a model structure on the category of simplicial objects in C in
which the fibrant objects are the 2–Segal objects.

To make our comparison, then, we first need a model category whose fibrant objects are
augmented stable double Segal objects in C , the homotopical analogues of augmented
stable double categories. While double Segal objects give a homotopical generalization
of double categories, we can also describe the appropriate generalizations of the notions
of augmentation and stability in that context. The resulting structures can be realized
as the fibrant objects in a model structure on a category of bisimplicial objects in C
with additional structure.

We now state the main result of this paper, which is stated more precisely in Theorem 6.1:

Algebraic & Geometric Topology, Volume 21 (2021)



1270 J E Bergner, A M Osorno, V Ozornova, M Rovelli and C I Scheimbauer

Theorem There is a Quillen equivalence between the model category for 2–Segal
objects and the model category for augmented stable double Segal objects.

As in the discrete case, the functor from augmented stable double Segal objects can
be regarded as a version of the S�–construction, and its adjoint can be thought of as
a path construction. We show in Section 3.1 that the restriction to the discrete case
recovers the functors from our previous work.

A topic of much recent work has been the generalization of the classical S�–construction
to more general contexts, such as for stable .1; 1/–categories and (proto-)exact .1; 1/–
categories, for example by Barwick [5], Blumberg, Gepner and Tabuada [8] and Fiore
and Pieper [15]. In a companion paper [7] we show that our construction recovers and
generalizes these results; we give a summary in Section 3.2.

Outline of the paper

In Section 1, we recall some background information about enriched localizations
and 2–Segal spaces, as well as summarize our previous results in the discrete setting.
Section 2 is concerned with developing the definition of augmented stable double Segal
objects and defining the S�–construction in this context. In Section 3 we discuss how
this construction is a generalization of previously known ones: in Section 3.1 we show
explicitly that we recover the one from the discrete setting, and in Section 3.2 we
summarize how it generalizes the S�–construction as defined for proto-exact .1; 1/–
categories.

We turn to developing the model structures that we need in Section 4. We show that
there is a Quillen pair between these model structures in Section 5, and in Section 6
we show that it is a Quillen equivalence.

Finally, in Section 7 we consider some variants of the model structures and comparisons
that we have developed in this paper.
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1 Summary of background results

In this section we recall some necessary background material. First, we review some
standard results concerning presheaves in a symmetric monoidal model category. We
then review the theory of 2–Segal objects, which are central to our work here, and sum-
marize the comparison between 2–Segal sets and augmented stable double categories.

1.1 Enriched model structures on presheaf categories

We begin with a review of the basic theory of presheaf categories in a symmetric
monoidal category and some relevant results in the context of model categories. One
purpose of this section is to set notation that we use throughout; the reader may choose
to skip this section and refer back as needed.

Let I be a small category and C D .C;˝; 1/ a complete and cocomplete closed
symmetric monoidal category. We denote by Fun.I; C/ the category of functors I! C .
As explained in [25, Section 2.5], there is an adjunction

d W Set� C WU

between the functors defined by

d.X / WD
a
X

1 and U.Y / WD HomC.1;Y /:

Objects in the image of d are called discrete. Here, and elsewhere in the paper, we
follow the convention of displaying the left adjoint topmost.

The following proposition enables us to view every presheaf in Set as a discrete presheaf
in C via the functor d� :

Algebraic & Geometric Topology, Volume 21 (2021)
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Proposition 1.1 The adjunction d W Set� C WU induces an adjunction

d� W Fun.I;Set/� Fun.I; C/ WU�:

For simplicity, we frequently omit the notation d� when referring to discrete presheaves.

An important feature of the category Fun.I; C/ is that it has a canonical enrichment.

Proposition 1.2 [25, Section 2.2] The category Fun.I; C/ is enriched over C . Given
objects X and Z of Fun.I; C/, the mapping object in C is the end

MapFun.I;C/.X;Z/ WD

Z
I

MapC.Xi ;Zi/:

Now suppose that f W I ! J is a functor between small categories. The asso-
ciated precomposition functor f � W Fun.J; C/ ! Fun.I; C/ admits a right adjoint
f� W Fun.I; C/ ! Fun.J; C/ via right Kan extension. The following statement is a
variant of [25, Theorem 4.50]:

Proposition 1.3 The precomposition functor f � and its right adjoint f� form a
C–enriched adjunction

f � W Fun.J; C/� Fun.I; C/ Wf�:

Now we equip C with a model structure that is compatible with the closed symmetric
monoidal structure.

Assumption 1.4 Let C D .C;˝;1/ be a combinatorial closed symmetric monoidal
model category in which all objects are cofibrant, so in particular it is left proper.

Examples include the category sSet of simplicial sets endowed with the classical
model structure due to Quillen [28], the category Gpd of groupoids endowed with
the canonical model structure [1, Section 5], and the category Set endowed with the
(unique) model structure in which weak equivalences are isomorphisms.

Remark 1.5 It is possible that our results can be extended to more general model
structures, but these assumptions are convenient for our arguments. In particular, the
assumption that all objects are cofibrant appears centrally in two places. First, we
use the condition that the unit object is cofibrant when comparing discrete objects to
objects in C , for example already in the next lemma. Second, we use that all objects
are cofibrant in establishing the Quillen adjunction in Proposition 5.2, since the left
adjoint there need not be derived.

Algebraic & Geometric Topology, Volume 21 (2021)
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Ideally we would like to have similar results in more generality. For example, the usual
model structure on topological spaces does not have all objects cofibrant. Another
example is the model category of derived stacks from [31], which appeared in the
context of 2–Segal spaces in [11]; but even affine stacks need not be cofibrant. However,
we expect our results could be adjusted to this setting.

The following lemma incorporates the appropriate model structures to give us more
information about the adjunction from Proposition 1.1. We leave the proof to the reader.

Lemma 1.6 The functor

d� W Fun.I;Set/! Fun.I; C/

sends monomorphisms to levelwise cofibrations.

Motivated by this lemma, we consider the category of presheaves on C with the injective
model structure, in which both the weak equivalences and the cofibrations are given
levelwise.

Theorem 1.7 [3, Propositions 4.50 and 4.51] The category Fun.I; C/ admits the
injective model structure. This model structure is combinatorial , symmetric monoidal ,
enriched over C with respect to the mapping spaces from Proposition 1.2, and has all
objects cofibrant.

Throughout this paper, unless indicated otherwise, we assume that Fun.I; C/ is equipped
with the injective model structure. When we want to emphasize this structure or when
there might be ambiguity, we denote this model structure by Fun.I; C/inj . We have
chosen to use the injective model structure because all objects are cofibrant, and
hence derived mapping objects can be computed easily, as the following proposition
demonstrates. We discuss other model structures on our categories of interest in
Section 7.

Definition 1.8 Given objects X and Z of Fun.I; C/, the derived mapping object is
given by

Maph.X;Z/ WDMap.X;Zf /;

where .�/f denotes a functorial fibrant replacement in the injective model structure
on Fun.I; C/.

Algebraic & Geometric Topology, Volume 21 (2021)
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More information about derived mapping objects and enriched model categories can
be found in [3]. We collect the main properties in the following proposition:

Proposition 1.9 The derived mapping object is functorial , respects weak equivalences
in both variables and coincides up to equivalence with the strict mapping space when
the second variable is fibrant.

We now recall some terminology and the construction of enriched localizations of a
model category.

Definition 1.10 Let S be a set of maps in Fun.I; C/ with the injective model structure.

� An object X of Fun.I; C/ is S –local if it is fibrant and, for every map f WA!B

in S, the induced map

f � WMaph.B;X /!Maph.A;X /

is a weak equivalence in C .

� A map g W C !D in Fun.I; C/ is an S –local equivalence if for every S –local
object X, the induced map

g� WMaph.D;X /!Maph.C;X /

is a weak equivalence in C .

Since we use the injective model structure in which all objects are cofibrant, and
S –local objects are assumed to be fibrant, the underived mapping spaces in our setting
model derived mapping spaces, and hence can be used in this definition.

With these definitions in hand, we can define the enriched localization of the injective
model structure on Fun.I; C/ with respect to the maps in S.

Theorem 1.11 [3, Theorem 4.46] Let S be a set of maps of Fun.I; C/. There exists
a cofibrantly generated model structure on Fun.I; C/, denoted by Fun.I; C/S , in which

� the cofibrations are the levelwise cofibrations, and in particular all objects are
cofibrant ;

� the fibrant objects are the S –local objects;

� the weak equivalences are the S –local equivalences; and

� the weak equivalences between fibrant objects are the levelwise weak equiva-
lences.

Algebraic & Geometric Topology, Volume 21 (2021)
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The definitions we have used, and the previous theorem, hold for more general model
categories than the injective model structure, in particular for the projective model
structure on Fun.I; C/, which we consider in Section 7. The S –local objects are
dependent on the model structure chosen, but the S –local equivalences only depend
on the weak equivalences thereof.

1.2 2–Segal objects

In the context of a category C satisfying Assumption 1.4, we recall the notion of a
Segal map.

Notation 1.12 Let n� 0. Denote by IŒn� the spine of the standard n–simplex, ie the
simplicial set which is the colimit of standard 1–simplices

�Œ1�q�Œ0� � � �q�Œ0��Œ1�Š IŒn���Œn�;

where the image of the i th copy of �Œ1� is the simplex of �Œn� with vertices i and iC1.

Definition 1.13 A Segal object in C is a simplicial object in C such that, for every
n� 2, the Segal map

Xn!X1
h
�X0
� � �

h
�X0

X1„ ƒ‚ …
n

'Maph
C�op .IŒn�;X /

which is induced by the inclusion IŒn� ,!�Œn� is a weak equivalence.

Dyckerhoff and Kapranov define 2–Segal objects using higher-dimensional analogues
of these Segal maps, in the sense that they arise from polygonal decompositions of
polygons [11].

For an .nC1/–gon in the plane with vertices labeled cyclically by f0; 1; : : : ; ng, we
consider its polygonal decompositions with vertices chosen amongst the vertices of
the polygon. Thus, a polygonal decomposition consists of a collection of noncrossing
diagonals subdividing the .nC1/–gon into other polygons. For technical reasons, we
view such a decomposition as the collection of the resulting polygons together with the
defining diagonals.

Formally, we can regard such a decomposition as a subposet P of the power set of
f0; 1; : : : ; ng which is closed under nonempty intersection. For instance, the polygonal

Algebraic & Geometric Topology, Volume 21 (2021)
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decomposition of the square

0 1

23

corresponds to the poset ff1; 3g; f1; 2; 3g; f0; 1; 3gg.

Definition 1.14 Let P be a polygonal decomposition of a regular .nC1/–gon, con-
sisting of .kC1/–gons of the form fi0; : : : ; ikg for varying k . The P –Segal map of a
simplicial object X in C is the induced map

Xn! holim
fi0;:::;ikg2P

Xk ;

where the homotopy limit is taken over the poset of polygons fi0; : : : ; ikg occurring in
the decomposition P, ordered by inclusion of vertices.

Now we are able to define 2–Segal objects, following [11]. Here we use the original
definition, given in terms of triangulations, or polygonal decompositions into triangles.

Definition 1.15 A 2–Segal object in C is a simplicial object in C such that, for every
n� 3 and every triangulation T of a regular .nC1/–gon, the T -Segal map

Xn! holim
fi0;:::;ikg2T

kD1;2

X2 'X2
h
�X1
� � �

h
�X1

X2„ ƒ‚ …
n�1

is a weak equivalence.

The conditions for a P –Segal map to be a weak equivalence can be rephrased in terms
of derived mapping spaces by means of the following notation.

Notation 1.16 Let P be a polygonal decomposition of the regular .nC1/–gon, con-
sisting of .kC1/–gons of the form fi0; : : : ; ikg for varying k . We denote by �ŒP � the
smallest subcomplex of �Œn� containing all these simplices, as in [11, Formula 2.2.12].
The simplicial set �ŒP � can be expressed as a colimit of standard simplices

colim
fi0;:::;ikg2P

�Œk�Š�ŒP ���Œn�:

We emphasize two special cases. When P D T is a triangulation of the regular
.nC1/–gon with vertices from the original .nC1/–gon, the simplicial set �ŒT � can
be expressed as an iterated pushout of the form

�Œ2�q�Œ1� � � �q�Œ1��Œ2�„ ƒ‚ …
n�1

Š�ŒP ���Œn�:

Algebraic & Geometric Topology, Volume 21 (2021)
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When P is a decomposition of the .nC1/–gon into a triangle f0; 1; 2g and the remaining
n–gon, or into the triangle fn� 2; n� 1; ng and the remaining n–gon, such as in the
examples

0

1 2

3

45

0

1 2

3

45

the simplicial set �ŒP � can be expressed as a pushout of the form

�Œn� 1�q�Œ1��Œ2�Š�ŒP ���Œn�:

This discussion can be summarized via the following proposition:

Proposition 1.17 Given a simplicial object X in C , the P –Segal map is a weak
equivalence in C if and only if the associated map

Maph.�Œn�;X /!Maph.�ŒP �;X /;

induced by the inclusion
colim

fi0;:::;ikg2P
�Œk�Š�ŒP � ,!�Œn�

is a weak equivalence in C .

Determining whether a simplicial object is 2–Segal from the definition can be difficult,
since there are so many possible triangulations of a polygon. However, our next result
gives a substantial simplification, namely, that it is enough to check specific P –Segal
maps induced by decompositions of an .nC1/–gon into a triangle and remaining n–gon.

To state that result, we recall some notation from [11]. Given a simplicial object X

in C and an injective map � W Œk� ! Œn� in �, we denote the induced map �� by
Xn!Xf�.0/;:::;�.k/g . Note that this notation is compatible with composition.

Proposition 1.18 A simplicial object X in C is 2–Segal if and only if , for any n� 3,
the induced maps

Xn!Xf0;1;2g
h
�Xf0;2g

Xf0;2;:::;ng and Xn!Xfn�2;n�1;ng

h
�Xfn�2;ng

Xf0;:::;n�2;ng

are weak equivalences.
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Since we are working with model categories, it is convenient to make use of the
following fact in the proof, allowing us to use strict pullbacks, rather than homotopy
pullbacks, in the targets of the Segal maps.

Lemma 1.19 If X is an injectively fibrant simplicial object in C , then, for any
injective map � W Œk�! Œn� in �, the induced map

Xn!Xf�.0/;:::;�.k/g

is a fibration in C . In particular ,

Xf0;:::;jg �Xf0;jg
Xf0;j ;:::;ng 'Xf0;:::;jg

h
�Xf0;jg

Xf0;j ;:::;ng:

Moreover , for every 0� j � n, the projections

Xf0;:::;jg �Xf0;jg
Xf0;j ;:::;ng!Xf0;:::;jg and Xf0;:::;jg �Xf0;jg

Xf0;j ;:::;ng!Xf0;j ;:::;ng

are fibrations in C .

Proof By Lemma 1.6, the map � W�Œk�! �Œn� is a levelwise cofibration between
discrete simplicial objects. Since X is injectively fibrant, it follows that the induced
map

Xn ŠMap.�Œn�;X /!Map.�Œk�;X /ŠXf�.0/;:::;�.k/g

is a fibration in C , as desired.

We can now prove our criterion for 2–Segal objects.

Proof of Proposition 1.18 In [11, Proposition 2.3.2], Dyckerhoff and Kapranov show
that X is 2–Segal if and only if, for every n � 3, 0 < i < n� 1 and 1 < j < n, the
maps

Xn!Xf0;:::;jg
h
�Xf0;jg

Xf0;j ;:::;ng and Xn!Xfi;:::;ng
h
�Xfi;ng

Xf0;:::i;ng

are weak equivalences. With j D 2 and i D n�2, we get the direct implication. For the
converse implication, we proceed by induction on n. Here we show that, for every n

and every 1< j < n, the map

.1.20/ Xn!Xf0;:::;jg
h
�Xf0;jg

Xf0;j ;:::;ng

is a weak equivalence; the argument for the other map follows by a similar argument.

When n D 3, we have that j D 2, so the map in (1.20) is by assumption a weak
equivalence. Fix n > 3 and assume the condition holds for k < n. For 1 < j < n,

Algebraic & Geometric Topology, Volume 21 (2021)
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consider the decomposition of the .nC1/–gon given by the two diagonals f0; j g
and f0; 2g,

0

1
2

jn : : :

: :
:

into a triangle and two other polygons. By the inductive hypothesis, the maps

Xf0;:::;jg!Xf0;1;2g
h
�Xf0;2g

Xf0;2;:::;jg;

Xf0;2;:::;ng!Xf0;2;:::;jg
h
�Xf0;jg

Xf0;j ;:::;ng

are weak equivalences.

We exhibit the desired map as a zigzag of weak equivalences using the two-out-of-three
property, but to get the commuting diagram, it is useful to use concrete models for
the homotopy pullback. We do so by first taking an injective fibrant replacement
for X. Using Lemma 1.19 we can now work with strict pullbacks rather than homotopy
pullbacks. Thus, in the diagram

Xn Xf0;:::;jg �Xf0;jg
Xf0;j ;:::;ng

Xf0;1;2g �Xf0;2g
Xf0;2;:::;ng Xf0;1;2g �Xf0;2g

Xf0;2;:::;jg �Xf0;jg
Xf0;j ;:::;ng

' '

'

the bottom and right arrows are weak equivalences. The left arrow is a weak equivalence
by assumption. The two-out-of-three property implies that the top arrow is a weak
equivalence as well, as we wished to show.

Remark 1.21 There is a technically subtle step in the proof above which arises
from working with homotopy pullbacks in the model category itself rather than in
the corresponding .1; 1/–category or homotopy category. There are different ways
to handle this subtlety; we chose Lemma 1.19 as the most suitable for our purposes.
Another possibility is to choose a functorial model for homotopy pullbacks in C . We
continue to use the proof strategy as above in future proofs without further discussion.

In both [11] and [16], the following unitality condition was shown to be satisfied for a
number of examples. Roughly speaking, it says that identity maps behave as we expect
them to.
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Definition 1.22 A 2–Segal object in C is unital if, for all n � 2 and 0 � i � n� 1,
the diagram

Xn�1 X0

Xn X1

˛i

si s0

ˇi

is a homotopy pullback, where s0 and si are degeneracy maps and the maps ˛i and ˇi

are induced by the maps

˛i
W Œ0�! Œn� 1�; 0 7! i; and ˇi

W Œ1�! Œn�; 0< 1 7! i < i C 1:

Remark 1.23 The squares appearing in the definition of unitality are induced by the
square of simplicial sets

�Œn� 1� �Œ0�

�Œn� �Œ1�

˛i

si

ˇi

s0

As this square is commutative, it induces a map

.1.24/ �Œn�q
ˇi ;s0

�Œ1�
�Œ0�!�Œn� 1�:

We can now rephrase the definition of unitality by saying that X is a unital 2–Segal
object if and only if all induced maps

Maph.�Œn� 1�;X /!Maph.�Œn�q
ˇi ;s0

�Œ1�
�Œ0�;X /

are weak equivalences.

However, Feller, Garner, Kock, Underhill-Proulx and Weber recently showed that the
unitality condition is automatically satisfied for any 2–Segal object:

Theorem 1.25 [12] Every 2–Segal object is unital.

In particular, we do not need to establish separately that our 2–Segal objects of interest
are unital. However, this condition still plays an important role in proving some of our
comparisons of model structures, so we cannot ignore it entirely.

Remark 1.26 For the rest of this paper, we typically omit the term “unital” when
referring to 2–Segal objects, with two main exceptions. First, when we give formal
statements of prior results which use the term, we include it for clarity and consistency.
Second, as mentioned above, we occasionally need to invoke the fact that 2–Segal
objects are indeed unital.
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1.3 2–Segal sets and augmented stable double categories

In our previous paper [6], we established an equivalence of categories between 2–Segal
sets and certain kinds of double categories. In this subsection, we review double
categories, the extra conditions we want to place on them, and the equivalence with
2–Segal sets.

In brief, a double category D is a category internal to categories. In other words, it
consists of objects ObD, horizontal morphisms HorD, vertical morphisms VerD and
squares SqD. We denote horizontal morphisms by � and vertical morphisms by �.
There are usual source and target maps sh; th W HorD!ObD and sv; tv W VerD!ObD.
There are “horizontal” source and target maps sh; th W SqD! VerD and “vertical”1

source and target maps sv; tv W SqD!HorD. We refer the reader to [6, Section 3] for
more details on the notation that we use, and to [14] or [17] for the general theory of
double categories.

We recall from [6] that a double category D is stable if the maps

.1.27/ HorD sh�
sv

ObD VerD .sv;sh/
 ���� SqD .th;tv/

����! VerD tv�
th

ObD HorD

are isomorphisms. These isomorphisms amount to requiring that every span in D
given by a horizontal arrow and a vertical arrow can be filled uniquely to a square, and
similarly for every cospan.

A double category D is augmented by a subset AD of its objects if the maps

.1.28/ AD�sh

ObD HorD thıpr2
����! ObD and VerD tv�ObD AD svıpr1

����! ObD

are isomorphisms. These isomorphisms amount to requiring that for every object x

in D there is a unique horizontal morphism with source in the augmentation and
target x , and, similarly, there is a unique vertical morphism with source x and target
in the augmentation.

We recall three important examples of stable double categories that appear later in the
paper.

Example 1.29 For any n� 0, consider the double category W Œn� of [6, Definition 4.1]
defined as follows:

� The set of objects is given by

Ob.W Œn�/D f.i; j / j 0� i � j � ng:

1Although possibly confusing, the “horizontal” source and target correspond to horizontal composition,
and hence are vertical morphisms.
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� The set of horizontal arrows is given by

Hor.W Œn�/D f.i; j ; `/ j 0� i � j � `� ng:

A horizontal morphism .i; j ; `/ with i � j � ` is viewed as a map

.i; j /� .i; `/:

� The set of vertical arrows is given by

Ver.W Œn�/D f.i; k; j / j 0� i � k � j � ng:

A vertical morphism .i; k; j / with i � k � j is viewed as a map

.i; j /� .k; j /:

� The set of squares is given by

Sq.W Œn�/D f.i; k; j ; `/ j 0� i � k � j � `� ng:

A square .i; k; j ; `/ with 0� i � k � j � `� n is viewed as a square

.1.30/

.k; `/

.i; j /

.k; j /

.i; `/

For any n� 0 the double category W Œn� is stable, and augmented when endowed with
the augmentation set

A.W Œn�/D f.i; i/ j 0� i � ng:

For instance, if we follow the convention that a diagram represents a double category that
contains all the displayed objects, arrows and squares, and all their possible composites
and identities, and that stars � denote elements of the augmentation set, the double
category W Œ4� can be depicted as follows:

.1.31/

�

�

�

�

�
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Example 1.32 For any n� 0, consider the sub-double category HŒn� of W Œn� spanned
by the first row of W Œn�, ie the full sub-double category on the set

Ob.HŒn�/D f.0; j / j 0� j � ng Š fj j 0� j � ng:

For any n the double category HŒn� is stable, but it cannot be augmented by any subset
of its objects.

For example, the double category HŒ4� can be depicted as follows:

.1.33/ �

Note that HŒn� only has identity squares. Dually, we can consider the double category
V Œn� spanned by the last column of W Œn�, which is also stable but not augmented.

Example 1.34 For any q; r � 0, consider the double category Œq�� Œr � from [14,
Example 2.9], defined as follows:

� The set of objects is given by

Ob.Œq�� Œr �/D f.i; j / j 1� i � q; 1� j � rg:

� The set of horizontal arrows is given by

Hor.Œq�� Œr �/D f.i; j ; k/ j 0� i � q; 0� j � k � rg:

� The set of vertical arrows is given by

Ver.Œq�� Œr �/D f.i; j ; k/ j 0� i � k � q; 0� j � rg:

� The set of squares is given by

Sq.Œq�� Œr �/D f.i; j ; k; `/ j 0� i � k � q; 0� j � `� rg:

For instance, the double category Œ2�� Œ3� can be depicted as follows:

.1.35/

For any q and r , the double category Œq�� Œr � is stable. However, it cannot be made
into an augmented double category, since the sets of connected components of the
horizontal category and of the vertical category are necessarily in bijection for an
augmented double category.
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We denote by DCatst
aug the category of augmented stable double categories, and by

U2Seg the category of unital 2–Segal sets. Note that we include “unital” here for
emphasis to be consistent with the earlier work which we reference here. In our previous
paper [6], we defined the functors

P W U2Seg! DCatst
aug and S� W DCatst

aug! U2Seg;

which we briefly recall. For more details, see [6, Sections 4 and 5].

Given a unital 2–Segal set X, the path construction P assigns to X an augmented
stable double category PX in which Ob.PX / D X1 , Hor.PX / D X2 D Ver.PX /,
Sq.PX /DX3 and A.PX /DX0 . The source, target and identity maps are given by
appropriate face and degeneracy maps, and the various composites are induced by the
inverses of the 2–Segal maps.

In the other direction, given an augmented stable double category D, the Waldhausen
construction S� takes D to a simplicial set whose set of n–simplices is corepresented
by W Œn�.

Remark 1.36 Although Waldhausen did not work explicitly with double categories
in [32], his S�–construction can be interpreted in that language. Given a Waldhausen
category F, one can define an augmented (not necessarily stable) double category D.F/
with cofibrations, quotient maps, pushout diagrams and a chosen zero object as the
horizontal morphisms, vertical morphisms, squares and the augmentation, respectively.
Then the objects of S�F can be identified with the set of augmented double functors
W Œn�! D.F/. We revisit this point of view in [7].

The following theorem is the main result of [6]:

Theorem 1.37 [6, Theorem 6.1] The path construction P and the Waldhausen con-
struction S� induce an equivalence of categories

P W U2Seg� DCatst
aug WS�:

The aim of this paper is to prove the homotopical analogue to this theorem. Before
moving away from the discrete setting, however, we establish a helpful result about the
effect of applying the path construction to a simplex.

For any n � 0, the simplicial set �Œn� is the nerve of the category Œn� and hence a
Segal set. We can apply the functor P to it (since it is automatically unital) to obtain
an augmented stable double category.

Algebraic & Geometric Topology, Volume 21 (2021)



2–Segal objects and the Waldhausen construction 1285

Proposition 1.38 There is a natural isomorphism of augmented stable double cate-
gories

P�Œn�ŠW Œn�:

Proof By the construction of P from [6, Section 5], we have the following descriptions
of the sets of objects, horizontal and vertical morphisms, squares and augmentation set
of the augmented stable double category P�Œn�:

Ob.P�Œn�/D�Œn�1 Š Hom.Œ1�; Œn�/Š f.i; j / j 0� i � j � ng;

Hor.P�Œn�/D�Œn�2 Š Hom.Œ2�; Œn�/Š f.i; j ; `/ j 0� i � j � `� ng;

Ver.P�Œn�/D�Œn�2 Š Hom.Œ2�; Œn�/Š f.i; k; j / j 0� i � k � j � ng;

Sq.P�Œn�/D�Œn�3 Š Hom.Œ3�; Œn�/Š f.i; k; j ; `/ j 0� i � k � j � `� ng;

A.P�Œn�/D�Œn�0 Š Hom.Œ0�; Œn�/Š f.i; i/ j 0� i � ng:

It remains to compare the rest of the double category structure: the horizontal and
vertical source and target maps, identities and compositions.

By definition, the horizontal source and target maps Hor.P�Œn�/� Ob.P�Œn�/ are
given by d2; d1 W�Œn�2��Œn�1 , respectively, and therefore send an element .i; j ; `/2
Hor.P�Œn�/ to .i; j / and .i; `/, which are exactly the source and target of the horizontal
morphism .i; j ; `/ W .i; j /� .i; `/ in W Œn�.

Similarly, the vertical source and target maps Ver.P�Œn�/� Ob.P�Œn�/ are given by
d1; d0 W�Œn�2��Œn�1 , which coincide with the source and target maps of the vertical
morphism .i; k; j / W .i; j /� .k; j / in W Œn�.

On Sq.P�Œn�/ D �Œn�3 , the vertical source and target by definition are given by
d1; d0 W�Œn�3��Œn�2 , whereas the horizontal source and target are given by

d3; d2 W�Œn�3��Œn�2:

By inspection, for an element .i; k; j ; `/ 2 Sq.P�Œn�/, these definitions coincide with
those indicated in (1.30).

A straightforward check establishes that composition and identities of P�Œn� and W Œn�

coincide.

2 The generalized S�–construction

In this section we introduce our main construction, a homotopical generalization of the
S�–construction as described in the previous section.
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The first step is to establish the correct input objects for this construction, which should
possess some of the features of an exact category. As we saw in the previous section,
in the discrete case the appropriate structure is that of an augmented stable double
category. Here, we generalize double categories to double Segal objects, then develop
augmented and stable versions in this context.

2.1 Double Segal objects

Inspired by the fact that double categories are categories internal to categories, we use a
higher categorical version thereof modeled by double Segal objects in C , as investigated
by Haugseng [19]. They are Segal objects in the category of Segal objects in C and
model double categories up to homotopy.

It is important to note that double Segal objects are more general than the 2–fold Segal
spaces of [2] or [26], which instead model .1; 2/–categories, or 2–categories up to
homotopy.

Let us look at this definition more precisely. Recall the notion of the spine of a standard
simplex from Notation 1.12.

Definition 2.1 A bisimplicial object Y in C is a double Segal object if for every
q; r � 1 the maps

Yq;r ! Yq;1
h
�Yq;0

� � �
h
�Yq;0

Yq;1„ ƒ‚ …
r

and Yq;r ! Y1;r
h
�Y0;r

� � �
h
�Y0;r

Y1;r„ ƒ‚ …
q

are weak equivalences in C . Here the left-hand map is induced by the inclusion
IŒr � ,! �Œr � in the second variable in .� � �/op , whereas the right-hand map is
induced by the same inclusion IŒq� ,!�Œq�, but in the first variable.

Let us consider two motivating examples.

Example 2.2 When C is the category of sets with its trivial model structure, a double
Segal set Y is precisely an appropriately defined nerve of a double category D, where
Y0;0 D ObD is the set of objects, Y0;1 D HorD and Y1;0 D VerD are the sets
of horizontal and vertical morphisms, respectively, and Y1;1 D SqD is the set of
distinguished squares [14, Definition 5.12]. More generally, using Example 1.34, the
set Yq;r D HomDCat.Œq�� Œr �;D/ is the set of q � r grids of distinguished squares.
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Horizontal composition of squares is a strict operation encoded by

Y1;1 �Y1;0
Y1;1

Š � Y1;2! Y1;1:

The rest of the structure can be defined similarly.

Example 2.3 Consider the case when C is the category of simplicial sets with the
classical model structure due to Quillen [28]. Just as Segal spaces can be regarded as
a homotopical analogue of Segal sets, which are nerves of categories, double Segal
spaces give a homotopical version of double Segal sets, which we have just seen model
nerves of double categories.

Given a double Segal space Y , we can think of Y0;0 as a space of objects, Y0;1 and Y1;0

as spaces of horizontal and vertical morphisms, respectively, and Y1;1 as a space of
distinguished squares. Horizontal composition of squares is an operation now only
well defined up to homotopy, and encoded by the span

Y1;1
h
�Y1;0

Y1;1
'
 � Y1;2! Y1;1;

where the homotopy fiber product on the left-hand side encodes the space of horizontally
composable squares, and Y1;2 represents the space of horizontally composable squares
together with a specified composition of such. According to this interpretation, Yq;r can
be thought of as the space of q � r grids of distinguished squares together with their
intermediate composites.

Remark 2.4 An important feature of a double category is the interchange law, which
describes the compatibility of horizontal and vertical composition. Let us look more
closely at how the analogous law for a double Segal object is encoded by the bisimplicial
structure.

Consider the space Y of four adjacent squares in a double Segal space Y (but without
any composition) glued along the dots as in the left picture below. In contrast, the
picture on the right is supposed to possess all composites of squares, with appropriate
compatibility, and corresponds to an element in Y2;2 :
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More precisely, by “glued along the dots” we mean that the space Y can be expressed
as the homotopy limit of a diagram of the form

Y D

0BBBBBB@
Y1;1 Y1;0 Y1;1

Y0;1 Y0;0 Y0;1

Y1;1 Y1;0 Y1;1

1CCCCCCA ;

which in turn can be written as either of the iterated homotopy fiber products

.Y1;1
h
�Y0;1

Y1;1/
h
�.Y1;0

h
�Y0;0

Y1;0/ .Y1;1
h
�Y0;1

Y1;1/;

.Y1;1
h
�Y1;0

Y1;1/
h
�.Y0;1

h
�Y0;0

Y0;1/ .Y1;1
h
�Y1;0

Y1;1/:

Consider the following diagram, which commutes up to homotopy:

.Y1;1
h
�Y0;1

Y1;1/
h
�.Y1;0

h
�Y0;0

Y1;0/.Y1;1
h
�Y0;1

Y1;1/ Y2;1
h
�Y2;0

Y2;1 Y1;1
h
�Y1;0

Y1;1

Y1;2

holim Y Y2;2 Y1;1

Y2;1

.Y1;1
h
�Y1;0

Y1;1/
h
�.Y0;1

h
�Y0;0

Y0;1/.Y1;1
h
�Y1;0

Y1;1/ Y1;2
h
�Y0;2

Y1;2 Y1;1
h
�Y0;1

Y1;1

'

'

'

'

'

'

'

'

Here, reaching Y1;1 through the top line corresponds to first composing the two pairs
of squares vertically, and then composing the result horizontally. On the other hand, the
bottom line corresponds to first composing the two pairs of squares horizontally, and
then composing the result vertically. The two operations are therefore compatible with
each other, as expected. One can similarly express higher versions of the interchange
law by using similar versions of this diagram.

2.2 Stable double Segal objects

We now introduce the stability condition on a double Segal object, which generalizes
the definition given in the discrete case. It also appears in work of Carlier [10].

For ease of notation, we denote an object .Œk�; Œ`�/ in ��� simply by .k; `/. We
denote by sh; th W .k; 0/! .k; `/ the maps given by .id; ˛0/ and .id; ˛`/, respectively,
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where ˛i is the map from Definition 1.22. We similarly denote by sv; tv W .0; `/! .k; `/

the maps .˛0; id/ and .˛k ; id/, respectively.

Definition 2.5 A bisimplicial object Y in C is stable if for every q; r � 1 the squares

.2.6/

.0; 0/ .0; r/

.q; 0/ .q; r/

sh

sv sv

sh

and
.0; 0/ .0; r/

.q; 0/ .q; r/

th

tv tv

th

induce weak equivalences

Y0;r
h
�Y0;0

Yq;0
'
 � Yq;r

'
�! Yq;0

h
�Y0;0

Y0;r :

Under the double Segal condition, there is an easier criterion to check whether a
bisimplicial object is stable. For an analogous result, see [10, Lemma 2.3.3].

Lemma 2.7 A double Segal space Y is stable if and only if the squares

.2.8/

.0; 0/ .0; 1/

.1; 0/ .1; 1/

sh

sv sv

sh

and
.0; 0/ .0; 1/

.1; 0/ .1; 1/

th

tv tv

th

induce weak equivalences

Y0;1
h
�Y0;0

Y1;0
'
 � Y1;1

'
�! Y1;0

h
�Y0;0

Y0;1:

Proof We prove that for a double Segal object, the left diagram in condition (2.8)
is equivalent to the left diagram in condition (2.6), and the equivalence of the right
diagrams follows similarly. We proceed by induction on q C r . In the base case
q D r D 1, the claim is exactly the assumption. Now, if q C r > 2, either q > 1

or r > 1. Without loss of generality, assume q > 1. We want to show that the left
vertical map in the following homotopy commutative diagram (see Remark 1.21) is an
equivalence:

Yq;r Y1;r
h
�Y0;r

Yq�1;r Y1;r
h
�Y0;r

.Y0;r
h
�Y0;0

Yq�1;0/

.Y1;r
h
�Y0;r

Y0;r /
h
�Y0;0

Yq�1;0

Y0;r
h
�Y0;0

Yq;0 Y0;r
h
�Y0;0

Y1;0
h
�Y0;0

Yq�1;0 Y1;r
h
�Y0;0

Yq�1;0

' '

'

'

'

'
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The left-hand horizontal maps are given by Segal maps in the first index, and are
equivalences since Y is double Segal. The right-hand horizontal maps are equivalences
by the induction hypothesis. The vertical left maps use the properties of the homotopy
fiber product. The two-out-of-three property finishes the proof.

2.3 Preaugmented bisimplicial objects

Recall from Section 1.3 that in the discrete context, we singled out some collection
of the objects of a double category which in turn satisfied some conditions. In this
section, we focus on identifying such a collection for a more general double Segal
object. Since we do not yet impose any universality conditions, we refer to such objects
as preaugmented. We do so by modifying the indexing category ���.

Definition 2.9 Let † be the category obtained from ��� by adding a new terminal
object, denoted by Œ�1�:

Œ�1�

.0; 0/ .1; 0/ .2; 0/ � � �

.0; 1/ .1; 1/ .2; 1/ � � �

.0; 2/ .1; 2/ .2; 2/ � � �

:::
:::

:::
: : :

A preaugmented bisimplicial object in C is a functor Y W†op! C . The category of
preaugmented bisimplicial objects is the category Fun.†op; C/, which, for simplicity
of notation, we henceforth denote by C†op

. We denote other categories of functors
similarly; for example, we write Fun..���/op; C/ as C.���/op

.

Definition 2.10 Let Y be a preaugmented bisimplicial object in C . Its underlying
bisimplicial object is the image of Y under the functor

i� W C†
op
! C.���/

op

induced by the inclusion i W���!†.
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Remark 2.11 The category † can be expressed as a pushout of categories

†Š .���/qd1

Œ0� Œ1�:

Therefore, the category of preaugmented bisimplicial objects can be expressed as a
pullback of categories

C†
op
Š C.���/

op
�C CŒ1�

op
;

decomposing the data of a preaugmented bisimplicial object into its bisimplicial part
and its preaugmentation.

Let us consider some examples when C is the category of sets; via Proposition 1.1 we
can consider these examples as discrete objects for more general C . We begin with
representable functors.

Example 2.12 Let C be the category of sets. For any q; r �0 we have the representable
preaugmented bisimplicial set †Œq; r � given by

†Œq; r �k;` D Hom†..k; `/; .q; r//Š Hom���..k; `/; .q; r//

for every k; `� 0, and

†Œq; r ��1 D Hom†.Œ�1�; .q; r//D¿:

Note that the bisimplicial set i�†Œq; r � (without the preaumentation) is precisely the
double nerve of the double category Œq�� Œr � from Example 1.34. Thus, one can keep
the picture (1.35) in mind to visualize †Œq; r �. These ideas are discussed in more detail
in Section 3.1.

However, we must treat the functor represented by Œ�1� separately. Since Œ�1� is the
terminal object of †, necessarily †Œ�1� is the constant functor at f�g.

The next examples are motivated by Examples 1.32 and 1.29; a more explicit connection
will be established in the next section.

Example 2.13 Again, let C be the category of sets. For any n � 0, we define
preaugmented bisimplicial sets

H Œn� WD†Œ0; n� s
h

q†Œ0;0�†Œ�1� and V Œn� WD†Œn; 0� t
v

q†Œ0;0�†Œ�1�;

where sh W†Œ0; 0�!†Œ0; n� is induced by composition with sh in ��� and

†Œ0; 0�k;` Š Hom���..k; `/; .0; 0//
shı�
���! Hom���..k; `/; .0; n//Š†Œ0; n�k;`:
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Similarly, tv W†Œ0; 0�!†Œn; 0� is induced by composition with tv in ���.

In particular, H Œ0�D†Œ�1�D V Œ0�. In the next section, after defining a nerve functor
for augmented stable double categories, we recover H Œn� as the nerve of the double
category HŒn� from Example 1.32, and analogously for V Œn�. Nonetheless, one can
refer to (1.33) for an intuitive description for H Œn�.

Finally, we consider an analogue of Example 1.29.

Example 2.14 For any n� 0, the preaugmented bisimplicial set WŒn� is defined by

WŒn�k;` D f.i0; : : : ; ik ; j0; : : : ; j`/ j 0� i0 � � � � � ik � j0 � � � � � j` � ng

for any k; `� 0 and by

WŒn��1 D f.i; i/ j 0� i � ng:

Degeneracy maps are given by repeating the appropriate index, face maps by removing
the designated index, and the augmentation map by the canonical inclusion. It is useful
to note that WŒ0�D†Œ�1�.

Also in this case, after defining the nerve functor, we can recover WŒn� as the nerve
of W Œn�. In the meantime, the reader may keep the diagram (1.31) in mind for intuition
for WŒn�.

The three examples H Œn�, V Œn� and WŒn�, taken as discrete objects in the setting of
more general simplicial objects in C , play an important role in what follows.

2.4 The generalized path construction and the S� –construction

While we still need to introduce the notion of augmentation in this context, the structure
of a preaugmented simplicial object is sufficient to define the functors which we use
for our comparison with 2–Segal objects. In this section we introduce an adjoint
pair of functors between the category of simplicial objects in C and the category of
preaugmented bisimplicial objects in C . These functors generalize in a precise sense the
path construction and the S�–construction from Theorem 1.37, as we show explicitly
in Proposition 3.6.

Definition 2.15 The ordinal sum ���!� extends to a functor p W†!� along
the canonical inclusion i W���!† satisfying

p..q; r/! Œ�1�/ WD .ŒqC 1C r �! Œ0�/:
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In particular, p is given on objects by

p.q; r/ WD ŒqC 1C r � and p.�1/ WD Œ0�:

Definition 2.16 The (generalized) path construction is the induced functor

p� W C�
op
! C†

op
:

Note that after composing with the underlying bisimplicial object functor i� this path
construction is the total décalage functor of [22].

Remark 2.17 Recall from Proposition 1.38 that for every n� 0 there is an isomor-
phism of augmented stable double categories

P�Œn�ŠW Œn�:

The analogous result in our new context is that there is an isomorphism of preaugmented
bisimplicial sets

p��Œn�ŠWŒn�;

where WŒn� is as defined in Example 2.14. As usual, via Proposition 1.1 we can regard
it as an isomorphism of discrete preaugmented bisimplicial objects in an arbitrary C .
This isomorphism can be verified directly from the definitions.

The functor p� admits a right adjoint p� W C†
op
! C�op

given by right Kan extension.
Since, as we show later in Proposition 3.6, p� generalizes the functor P, we take the
adjunction .P;S�/ as motivation for the following definition:

Definition 2.18 The (generalized) S�–construction is the right adjoint

p� W C†
op
! C�

op

to the generalized path construction.

Using Proposition 1.3, this adjoint pair has additional structure.

Proposition 2.19 The precomposition functor p� and its right adjoint p� form a
C–enriched adjunction

p� W C�
op � C†

op
Wp�:

Remark 2.20 The right adjoint

p� W C†
op
! C�

op

can be described explicitly. Indeed, by Proposition 1.3 and Remark 2.17, for every
preaugmented bisimplicial object Y there are canonical isomorphisms

p�.Y /n ŠMapC�op .�Œn�;p�Y /ŠMapC†op .p��Œn�;Y /ŠMapC†op .WŒn�;Y /:
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2.5 Augmented stable double Segal objects

In this section, we complete our definition of augmented stable double Segal objects.

Since we have defined stable double Segal objects in the context of bisimplicial objects,
we can use the underlying bisimplicial object functor i� from Definition 2.10 to make
sense of the double Segal condition and stability in the preaugmented setting.

Definition 2.21 A preaugmented bisimplicial object Y is double Segal if its underlying
bisimplicial object i�Y is double Segal. Similarly, it is stable if i�Y is stable.

Mimicking the approach to 2–Segal objects from Proposition 1.17, we can express
the double Segal property in terms of derived mapping spaces, using the representable
preaugmented bisimplicial sets †Œq; r � from Example 2.12. This perspective will
be useful when we develop our desired model structure. The following result is
straightforward to check from the definitions:

Proposition 2.22 The preaugmented bisimplicial object Y in C is double Segal if and
only if the maps

Maph.†Œq; r �;Y /!Maph.†Œq; 1�q†Œq;0� � � �q†Œq;0�†Œq; 1�;Y /;

Maph.†Œq; r �;Y /!Maph.†Œ1; r �q†Œ0;r � � � �q†Œ0;r �†Œ1; r �;Y /

induced by
�q;r
W†Œq; 1�q†Œq;0� � � �q†Œq;0�†Œq; 1�!†Œq; r �;

x�q;r
W†Œ1; r �q†Œ0;r � � � �q†Œ0;r �†Œ1; r �!†Œq; r �;

namely , the Segal maps in the second and first variable , respectively , are weak equiva-
lences in C .

We now define what it means for a preaugmented double Segal object to be augmented.
To do so, we generalize notation from Example 2.13 as follows. For any 0< k < n,
denote by eh W†Œ0; k�!†Œ0; n� the identification of †Œ0; k� as the k arrows at the end
of the horizontal chain of n arrows present in †Œ0; n�, as highlighted in the following
picture:

: : : : : :

n� k k
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Similarly, we denote by bh W†Œ0; k�! †Œ0; n� the identification of †Œ0; k� as the k

arrows at the beginning of the horizontal chain of n arrows present in †Œ0; n�. We
define ev; bv W†Œk; 0�! †Œn; 0� similarly. We refer the reader to the discussion in
Example 2.12 in regard to the slight abuse of notation in treating these arrows as if they
were in a category.

Definition 2.23 A preaugmented bisimplicial object Y is augmented if for any q; r �1,
the composites

Yq;0
tv

h
�Y0;0

Y�1
pr1
�! Yq;0

bv
�! Yq�1;0;.2.24/

Y0;r
sh

h
�Y0;0

Y�1
pr1
�! Y0;r

eh
�! Y0;r�1.2.25/

are weak equivalences, where the maps bv and eh are induced by the maps of repre-
sentables bv and eh .

We warn the reader that our notion of augmented bisimplicial object is different than
the one used by Carlier2 [10, Section 2.2].

Under the double Segal condition, to check whether a preaugmented bisimplicial object
is augmented it suffices to consider the above maps only for q D 1 and r D 1.

Lemma 2.26 A preaugmented double Segal object Y is augmented if and only if the
composites

Y1;0
tv

h
�Y0;0

Y�1
pr1
�! Y1;0

bv
�! Y0;0;.2.27/

Y0;1
sh

h
�Y0;0

Y�1
pr1
�! Y0;1

eh
�! Y0;0.2.28/

are weak equivalences in C .

Proof We show that having a weak equivalence in (2.27) implies having one in (2.24);
a similar argument shows that having a weak equivalence in (2.28) implies having a
weak equivalence in (2.25).

The composite map in (2.24),

Yq;0
tv

h
�Y0;0

Y�1
pr1
�! Yq;0

bv
�! Yq�1;0;

2There, an augmented bisimplicial 1–groupoid is an object in Fun
�
.�C��C/

op nf.�1;�1/g;Spaces
�

.
Thus, they are similar to our preaugmented bisimplicial objects in 1–groupoids, but have many extra
objects Xq;�1 and X�1;r rather than the single object X�1 , but without the extra condition we call the
augmentation.
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is the left vertical map in the homotopy commutative diagram (see Remark 1.21)

Y�1
h
�

tv

Y0;0
Yq;0 Y�1

h
�

tv

Y0;0

q‚ …„ ƒ
.Y1;0

sv
h
�Y0;0

� � �
h
�

tv

Y0;0
Y1;0/

.Y�1
h
�

tv

Y0;0
Y1;0/

sv
h
�Y0;0

.Y1;0
sv

h
�Y0;0

� � �
h
�

tv

Y0;0
Y1;0/

Yq�1;0 Y0;0
h
�Y0;0

.Y1;0
sv

h
�Y0;0

� � �
h
�

tv

Y0;0
Y1;0/„ ƒ‚ …

q�1

'

'

'

'

The horizontal maps are given by Segal maps in the first index, and are equivalences
since Y is double Segal. On the right, the top vertical map is given by associativity
of the homotopy fiber product and the bottom one is the composition in (2.27). The
two-out-of-three property finishes the proof.

As before, we can formulate the augmentation property in terms of derived mapping
spaces, the proof of which we leave to the reader.

Proposition 2.29 The preaugmented double Segal object Y is augmented if and only
if the maps

Maph.†Œq; 0�q†Œ0;0�†Œ�1�;Y /!Maph.†Œq� 1; 0�;Y /;

Maph.†Œ0; r �q†Œ0;0�†Œ�1�;Y /!Maph.†Œ0; r � 1�;Y /

induced by the inclusions

x�q
W†Œq� 1; 0� bv

�!†Œq; 0�!†Œq; 0�q†Œ0;0�†Œ�1�D V Œq�;

�r
W†Œ0; r � 1� eh

�!†Œ0; r �!†Œ0; r �q†Œ0;0�†Œ�1�DH Œr �;

respectively, are weak equivalences for all q; r � 1.

We give an analogous characterization for the stability condition.

Proposition 2.30 A preaugmented double Segal object Y is stable if and only if the
maps

Maph.†Œ1; 1�;Y /!Maph.†Œ1; 0�q†Œ0;0�†Œ0; 1�;Y /;

Maph.†Œ1; 1�;Y /!Maph.†Œ0; 1�q†Œ0;0�†Œ1; 0�;Y /
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induced by the inclusions

�1;1
W†Œ1; 0�q†Œ0;0�†Œ0; 1�!†Œ1; 1�;

x�1;1
W†Œ0; 1�q†Œ0;0�†Œ1; 0�!†Œ1; 1�;

respectively, are weak equivalences.

In the former case, we include a cospan into a square, and in the latter case, we include
a span into a square, as justified by the graphical explanations in (1.35).

Remark 2.31 Like augmented stable double categories, augmented stable double
Segal objects enjoy nice symmetry properties. Specifically, if Y is an augmented stable
double Segal object, then Y1;0 and Y0;1 are equivalent objects of C . More precisely,
there is a zigzag of weak equivalences connecting Y1;0 and Y0;1 :

Y1;0 ' Y1;0
h
�Y0;0

Y0;0 Y1;0
h
�Y0;0

.Y0;1
h
�Y0;0

Y�1/ .Y1;0
h
�Y0;0

Y0;1/
h
�Y0;0

Y�1

Y1;1
h
�Y0;0

Y�1

Y0;1 ' Y0;1
h
�Y0;0

Y0;0 Y0;1
h
�Y0;0

.Y1;0
h
�Y0;0

Y�1/ .Y0;1
h
�Y0;0

Y1;0/
h
�Y0;0

Y�1

' '

'

'

' '

The horizontal maps are equivalences by the augmentation conditions (2.27) and (2.28)
and by associativity of homotopy fiber products. The vertical maps are equivalences by
stability.

With a similar argument, one can prove that for every q � 0 and 0� i � q , the spaces
Yq;0 and Yq�i;i are weakly equivalent.

3 Relationship with other S�–constructions

In this section, we exhibit two sources of examples for preaugmented bisimplicial
object, quite different in nature. First, we define an augmented nerve for augmented
stable double categories, enabling us to compare to the discrete version of the S�–
construction developed in [6]. Second, we summarize a comparison to previously
known S�–constructions; full details can be found in [7].
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3.1 Comparison to augmented stable double categories

The examples of discrete augmented stable double Segal sets from the previous section
all arise from augmented stable double categories via the following nerve construction,
which is induced by the cosimplicial augmented stable double category W Œ� �.

Definition 3.1 The augmented double nerve of an augmented stable double category D
is the preaugmented bisimplicial set N aD W†op!Set obtained by applying the functor
HomDCatst

aug
.�;D/ to the composite

†
p
�!�

WŒ��
��! DCatst

aug:

In other words, for q; r � 0,

N aDq;r D HomDCatst
aug

�
W Œp.q; r/�;D

�
D HomDCatst

aug
.W ŒqC 1C r �;D/;

N aD�1 D HomDCatst
aug

�
W Œp.�1/�;D

�
D HomDCatst

aug
.W Œ0�;D/ŠAD:

The augmented nerve defines a functor

N a
W DCatst

aug! Set†
op
:

Let us consider the augmented nerves of our three families of examples of double
categories.

Example 3.2 For any n� 0, the preaugmented bisimplicial space WŒn� from Example
2.14 is the augmented nerve of the double category W Œn� from Example 1.29, in the
sense that there is an isomorphism

WŒn�ŠN a.W Œn�/:

The motivation for defining the augmented double nerve as such is that it agrees with
the usual nerve of double categories from [14] when forgetting to the category DCat
of double categories, in the sense of the following proposition. Here, we denote the
category of bisimplicial sets by Set.���/

op
.

Proposition 3.3 The following diagram commutes up to natural isomorphism:

DCatst
aug DCat

Set†
op Set.���/

op

N a

forget

N

i�
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Proof Since the double nerve N is corepresented by the bi-cosimplicial double
category .q; r/ 7! Œq�� Œr � from Example 1.34, it is enough to construct a bijection

.i�N aD/q;r D HomDCatst
aug
.W ŒqC 1C r �;D/Š HomDCat.Œq�� Œr �;D/D .ND/q;r

that is natural in q and r . We construct a double functor

Œq�� Œr �!W ŒqC 1C r �

by sending the object .i; j / to .i; j C qC 1/, and extending uniquely to horizontal
morphisms, vertical morphisms and squares. For instance, the image of Œ1� � Œ2�
into W Œ4� is highlighted in the following picture:

00 01

11 12

02

22

03

13

23

33

04

14

24

34

44

The functor induces the right-hand map in the diagram

HomDCatst
aug
.W ŒqC 1C r �;D/ HomDCat.Œq�� Œr �;D/

HomDCat.W ŒqC 1C r �;D/

Using stability, techniques similar to those used in [6, Proposition 4.9] can be used to
show that the composite map is a bijection. Roughly speaking, given a diagram in D
indexed over the red portion of the picture, the image of 11 can be determined using the
horizontal augmentation in D, the image of 01 via stability, and the image of 00 again
using the horizontal augmentation. The lower part of the diagram can be reconstructed
in a similar way, but instead using the vertical direction of the augmentation and the
opposite stability condition.

The following proposition enables us to identify an augmented stable double category
with the preaugmented bisimplicial set given by its augmented nerve:
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Proposition 3.4 The augmented nerve functor N a W DCatst
aug! Set†

op
is fully faithful.

Proof Given augmented stable double categories D and E, the commutative square

HomDCatst
aug
.D; E/ HomDCat.D; E/

HomSet†op .N aD;N aE/ HomSet.���/op .ND;N E/

forget

N a N

i�

is a pullback square by definition of the augmented nerve. Since the nerve functor on
double categories N W DCat! Set.���/

op
is fully faithful [13, Proposition 2.17], the

right vertical arrow is an isomorphism, and therefore so is the left vertical arrow. Thus
the augmented nerve N a W DCatst

aug! Set†
op

is fully faithful, as desired.

We can now show that augmented stable double Segal sets indeed generalize augmented
stable double categories via the augmented nerve construction.

Proposition 3.5 If D is an augmented stable double category, then its augmented
nerve N aD is an augmented stable double Segal set.

Proof First, we show that the underlying bisimplicial set of N aD is a double Segal
set. By Proposition 3.3, the underlying bisimplicial set of N aD is the usual double
category nerve ND, which is a double Segal set analogously to the fact that usual
nerves of categories are Segal sets.

To show that N aD is stable, it is straightforward to check the condition in Lemma 2.7
using (1.27). One can similarly verify that N aD is augmented by verifying Lemma 2.26
using (1.28).

Via the augmented nerve, the equivalence from Theorem 1.37,

P W U2Seg� DCatst
aug WS�;

is compatible with the adjunction

p� W C�
op � C†

op
Wp�

in the sense of the following proposition:
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Proposition 3.6 The following diagrams commute up to natural isomorphism:

U2Seg DCatst
aug

sSet Set†
op

P

N a

p�

and

U2Seg DCatst
aug

sSet Set†
op

N a

S�

p�

In light of this compatibility, we henceforth use the following notation:

Notation 3.7 We denote by P the path construction p� from Definition 2.16, and
by S� the right adjoint p� from Definition 2.18.

Proof of Proposition 3.6 Let X be a 2–Segal set, and recall that it is necessarily
unital. Commutativity of the first diagram follows from the bijections

.p�X /q;r DXqC1Cr

Š HomU2Seg.�ŒqC 1C r �;X /

Š HomDCatst
aug
.P.�ŒqC 1C r �/;PX /

Š HomDCatst
aug
.W ŒqC 1C r �;PX /

DN a.PX /q;r ;

which are justified as follows. The initial equality is the definition of p�. The first
isomorphism follows from corepresentability, while the second is given by fact that P is
fully faithful from Theorem 1.37. The last isomorphism follows from Proposition 1.38,
and the last line is simply the definition of the augmented nerve. Similarly,

.p�X /�1 DX0 DA.PX /DN a.PX /�1:

Moreover, these bijections are natural in †.

In order to prove that the second diagram commutes, let D be an augmented stable
double category. There are bijections

.p�N
aD/n Š HomsSet.�Œn�;p�N

aD/

Š HomSet†op .p��Œn�;N aD/

Š HomSet†op .WŒn�;N aD/

Š HomSet†op .N aW Œn�;N aD/

Š HomDCatst
aug
.W Œn�;D/

D Sn.D/
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which are natural in �. The first two isomorphisms arise from the Yoneda lemma
and the adjunction .p�;p�/. The others are given by Remark 2.17, Example 3.2 and
Proposition 3.4, respectively. Thus we conclude that the diagram commutes up to
isomorphism.

So far we have discussed how to view augmented stable double categories as augmented
stable double Segal sets. However, one might ask whether the same is true for any
choice of C using the discrete functor d� W Set†

op
! C†op

from Section 1.1. Note
that, a priori, the image of d� is merely a preaugmented bisimplicial object in C . As
the augmentation, double Segal and stability conditions are all defined in terms of
homotopy pullbacks, a sufficient condition for preservation of these structures is that
d W Set! C preserves homotopy pullbacks.3 It is not clear that this property holds for
any C , but we verify it for the case of C D sSet in the following example, which is the
most important example in practice.

Example 3.8 Since every map of discrete simplicial sets is a Kan fibration, the strict
pullback of maps between discrete spaces yields a model for the homotopy pullback.
Thus, for any diagram of discrete spaces

A! C  B;

the canonical map from the pullback to the homotopy pullback gives an equivalence

A�C B '
�!A

h
�C B:

In particular, this immediately implies the following comparison:

Proposition 3.9 A preaugmented bisimplicial set is double Segal , augmented or stable
if and only if it is such when regarded as a discrete preaugmented bisimplicial space.

3.2 Preview of proto-exact .1; 1/–categories

In this section we give an overview of how augmented stable double Segal spaces
arise naturally from the inputs of previous S�–constructions, namely from proto-exact
.1; 1/–categories, which generalize both exact categories and stable .1; 1/–categories.
In particular, our generalized S�–construction is a natural generalization of ones which
have been previously developed in these contexts. In the companion paper [7], we give
detailed proofs of the statements mentioned here and in particular look closely at the
special cases of exact categories and stable .1; 1/–categories.

3The appendix of [18] gives sufficient conditions for d to preserve finite limits and hence pullbacks.
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We summarize these different settings and constructions in the following diagram:

stable model
categories

stable
.1; 1/–

categories

exact
categories

(proto)-exact
.1; 1/–

categories

augmented
stable double
Segal spaces

augmented
stable double

categories

2–Segal
spaces

2–Segal sets

N pe P

S�

P

S�

Roughly speaking, we start with a homotopical category, together with extra data which
distinguishes certain objects, morphisms and commutative squares. An appropriate
nerve functor N pe assigns distinguished objects to the object Œ�1� of † and arrays of
size q � r of commuting squares to the object .q; r/.

While we do not want to go into the details of .1; 1/–category theory here, the main
idea is that an .1; 1/–category should be thought of as a category up to homotopy,
with a discrete collection of objects but with mapping spaces for which composition is
defined only up to homotopy. While there are several different ways to model such a
structure, here we use the framework of quasicategories, which has been developed
by Joyal [23] and Lurie [27]. Quasicategories are simplicial sets which satisfy certain
horn-filling conditions. They are more general than Kan complexes, which can be
thought of as groupoids up to homotopy. Often in the literature, the term “1–category”
is used rather than “quasicategory”, but we use the latter for the sake of precision.

Let us now turn to the notion of proto-exact quasicategory, which was defined by
Dyckerhoff and Kapranov [11, Definition 7.2.1]. Although they simply called them
“exact”, we use this name to distinguish them from the related, but not identical, exact
quasicategories in the sense of Barwick [4; 5], which are special cases of ours. The idea
is that this structure includes that of an exact category as a special case, yet is general
enough to include interesting examples that do not fit into the previous framework, such
as sub-quasicategories of a stable quasicategory which are closed under extensions, as
considered in [5]. The terminology used is very similar to what is used in the definition
of an exact category, so a reader only familiar with that level of generality can work in
that context instead.

Definition 3.10 A proto-exact quasicategory consists of a triple of quasicategories
.Q;M; E/ such that

� both M and E are sub-quasicategories of Q containing all equivalences;
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� the category Q has a zero object, M contains all the morphisms whose source
is a zero object, and E contains all the morphisms whose target is a zero object;

� any pushout of a morphism in M along a morphism of E exists and belongs
to M and any pushout of a morphism in E along a morphism of M is in E, and
similarly for pullbacks; and

� a square whose horizontal morphisms are in M and whose vertical morphisms
are in E is cartesian if and only if it is cocartesian.

A morphism between proto-exact quasicategories preserves the appropriate structure.

We now define a nerve functor which takes a proto-exact quasicategory to a preaug-
mented bisimplicial space. For any quasicategory Q, we denote by J.Q/ the maximal
Kan complex spanned by its vertices, as in [24, Proposition 1.16], and by QŒq��Œr � the
quasicategory of functors Œq�� Œr �!Q.

Definition 3.11 The proto-exact nerve N peQ of a proto-exact quasicategory Q D
.Q;M; E/ is the preaugmented bisimplicial space N peQ W†op ! sSet defined as
follows:

(1) The component in degree .q; r/ is the simplicial set

N peQq;r � J.QŒq��Œr �/

spanned by q�r grids in Q with horizontal morphisms in M, vertical morphisms
in E and all squares bicartesian.

(2) The augmentation space is the simplicial set

N peQ�1 � J.Q/

spanned by all the zero objects of Q.

The bisimplicial structure is induced by the bi-cosimplicial structure of the categories
Œq�� Œr �. The additional map is the canonical inclusion of the space of zero objects
into Q.

As we prove in [7], we can say more.

Proposition 3.12 The proto-exact nerve N pe defines a functor from the category of
proto-exact quasicategories to the category of augmented stable double Segal spaces.

The S�–construction for (proto)-exact quasicategories was considered by Barwick [4; 5]
and by Dyckerhoff and Kapranov [11, Section 2.4], and we denote the result of applying
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this construction to a proto-exact quasicategory Q by S�.Q/. The main result of [7] is
the following theorem:

Theorem 3.13 Let Q be a proto-exact quasicategory. There is a levelwise weak
equivalence of 2–Segal spaces

S�.Q/ '�! S�.N
peQ/:

4 The model structures

Now that we have introduced the categories of objects we would like to work with,
we equip them with homotopical structure. Specifically, we define model structures
for 2–Segal objects and for augmented stable double Segal objects which encode the
homotopy theories we are interested in.

4.1 The model structure for 2–Segal spaces

Following the approach of Dyckerhoff and Kapranov [11, Section 5.3] we construct a
model structure for 2–Segal spaces via an application of Theorem 1.11. Here we use
the mapping space description of 2–Segal spaces from Proposition 1.17 to determine
which maps to use for the localization.

Definition 4.1 Let S be the set consisting of the maps

fP W�ŒP �!�Œn�;

where P is a triangulation of the .nC1/–gon and �ŒP � is as in Notation 1.16.

We now localize the injective model structure on C�op
with respect to this set S, using

Theorem 1.11.

Proposition 4.2 [11, Section 5.3] Localizing the injective model structure on C�op

with respect to the set S results in a model structure, which we denote by C�op

S , in
which the fibrant objects are precisely the injectively fibrant 2–Segal objects.

Observe that, by Theorem 1.25, the fibrant objects of this model structure satisfy
unitality. The following result, which is used in the proof of Lemma 6.4, provides a
convenient reformulation of the fact that every 2–Segal object is unital. Specifically,
the map !n;i described below is one of the ways to encode unitality, and we establish
that is a weak equivalence in the localized model structure C�op

S .
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Proposition 4.3 The map

!n;i W�Œn� 1� d i

�!�Œn�!�Œn�q
ˇi ;s0

�Œ1�
�Œ0�;

where n� 0, 0� i � n and the map ˇi is as in Definition 1.22, is a weak equivalence
in the localized model structure C�op

S .

Proof We first observe that the map !n;i is right inverse to the map (1.24),

�Œn�q
ˇi ;s0

�Œ1�
�Œ0�!�Œn� 1�;

from Remark 1.23. Therefore, it is enough to show that the latter map is a weak
equivalence. To this end, let X be an injectively fibrant 2–Segal object, and we look
at the induced map

Xn�1 'Maph.�Œn� 1�;X /!Maph.�Œn�q
ˇi ;s0

�Œ1�
�Œ0�;X /'Xn

h
�X1

X0:

We know by Remark 1.23 that this map is a weak equivalence when X is unital, which
we know by Theorem 1.25.

4.2 The model structure for augmented stable double Segal objects

The model structure for augmented stable double Segal objects is also obtained via
localization. The maps with respect to which we localize are those developed in
Propositions 2.22, 2.29 and 2.30, and those results demonstrate that the local objects
have precisely the desired properties.

Definition 4.4 Let T be the union of the following three sets of maps in C†op
:

(1) the set TSegal of maps

�q;r
W†Œq; 1�q†Œq;0� � � �q†Œq;0�†Œq; 1�!†Œq; r �;

induced by the Segal map in the second variable, and

x�q;r
W†Œ1; r �q†Œ0;r � � � �q†Œ0;r �†Œ1; r �!†Œq; r �;

induced by the Segal map in the first variable, each for all q; r � 2;

(2) the set Taug of maps

�r
W†Œ0; r � 1�!†Œ0; r �!†Œ0; r �q†Œ0;0�†Œ�1�DH Œr �

for every r , induced by the map bh , and

x�q
W†Œq� 1; 0�!†Œq; 0�!†Œq; 0�q†Œ0;0�†Œ�1�D V Œq�

for every q � 0, induced by the map ev ; and
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(3) the set Tstable of maps

�q;r
W†Œq; 0�q†Œ0;0�†Œ0; r �!†Œq; r �;

induced by the inclusion of the cospan, and

x�q;r
W†Œ0; r �q†Œ0;0�†Œq; 0�!†Œq; r �;

induced by the inclusion of the span, each for all q; r � 0.

Similarly to before, we can localize the injective model structure on C†op
with respect

to the set T using Theorem 1.11.

Proposition 4.5 Localizing the injective model structure on C†op
results in a model

structure, which we denote by C†op

T , in which the fibrant objects are precisely the
augmented stable double Segal objects which are injectively fibrant.

4.3 The auxiliary model structure on C†op

Our goal is to prove that the model categories C�op

S and C†op

T are Quillen equivalent.
However, for the proof we use an intermediate model structure on C†op

which is easier
to compare to C�op

S . Once again, this model structure is given by a localization of the
injective model structure on C†op

.

The idea behind this localization is to apply the path construction P D p� to the maps
in S. With the isomorphism from Proposition 1.38 in mind, we make the following
definition:

Definition 4.6 Let P be a polygonal decomposition of the regular .nC1/–gon, and
recall the simplicial set �ŒP � from Notation 1.16. Let WŒP � be the preaugmented
bisimplicial set

WŒP � WD P�ŒP �:

In particular, when P is a decomposition of the .nC1/–gon into a triangle and an
n–gon, WŒP � can be expressed as a pushout of objects

WŒP �D P.�ŒP �/D P.�Œ2�q�Œ1��Œn� 1�/ŠWŒ2�qWŒ1� WŒn� 1�:
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Below is an image of WŒP � in the case where nD 4 and P is the decomposition of a
pentagon into a triangle and a quadrilateral by adding the diagonal from 0 to 2:

�

�

�

�

�

Treating WŒP � as a discrete object in C†op
for any C , we can now define the maps

with respect to which we want to localize.

Definition 4.7 Let W be the set of maps, in C†op
,

PfP W P�ŒP �ŠWŒP �!WŒn�Š P�Œn�;

where P is a triangulation of the .nC1/–gon.

As in the previous two localizations, we apply Theorem 1.11 to obtain the following
model structure:

Proposition 4.8 Localizing the injective model structure on C†op
with respect to W

results in a model structure which we denote by C†op

W .

Remark 4.9 In the next section, we show that every T–local object in C†op
is also

W–local, a key fact in comparing the two model structures on C†op
. However, the

converse result fails in general, showing that the two localizations do not coincide.
Specifically, for CD sSet , we claim that †Œ0; 0� is W–local but not T–local in sSet†

op
.

To see that †Œ0; 0� is W–local, first observe that, for any n and any decomposition P,
we have that

Map.WŒn�; †Œ0; 0�/DMap.WŒP �; †Œ0; 0�/D¿;

because the augmentation of †Œ0; 0� is empty, whereas the augmentations of WŒn�

and WŒP � are not. However, one can check that †Œ0; 0� is injectively fibrant, so the
isomorphism between the nonderived mapping spaces induces a weak equivalence of
derived mapping spaces. As a consequence †Œ0; 0� is W–local.
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To see that †Œ0; 0� is not T–local, consider the map

�1
W†Œ0; 0� ,!H Œ1�

in T. Mapping into †Œ0; 0�, we get the map

¿DMaph.H Œ1�; †Œ0; 0�/!Maph.†Œ0; 0�; †Œ0; 0�/¤¿;

which cannot be induced by a weak equivalence.

5 The generalized S�–construction as a right Quillen functor

In this section we prove the following result, which is at the core of the comparison of
our model structures. Recall the functors P and S� from Notation 3.7.

Theorem 5.1 The path construction and the S�–construction induce a Quillen pair

P W C�
op

S � C†
op

T WS�:

To prove this theorem, we make use of the auxiliary model structure, introduced in
Section 4.3, and, more specifically, we show that the two adjoint pairs

C�
op

S

P

S�

�!
 � C†

op

W

id

id
�!
 � C†

op

T

are Quillen pairs, with the left adjoints written topmost.

We first establish the first of these Quillen adjunctions, since it is the easier of the two.

Proposition 5.2 The path construction induces a Quillen pair

P W C�
op � C†

op
WS�;

on injective model structures , which descends to a Quillen pair after localization ,

P W C�
op

S � C†
op

W WS�:

Proof Let X be a simplicial object in C . Using the definition of P D p�, recall
that .PX /q;r D XqCrC1 and .PX /�1 D X0 . It follows that P preserves levelwise
cofibrations and levelwise weak equivalences and therefore is a left Quillen functor for
the injective model structures by [20, Proposition 8.5.3].

To show that this Quillen pair is compatible with the localizations, recall that we defined
W precisely to be P.S/. It follows that localizing C�op

with respect to S, and C†op
with

respect to P.S/, retains the structure of the Quillen pair by [20, Theorem 3.3.20].
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Thus, we have reduced Theorem 5.1 to comparing the two different model structures
on C†op

, as we restate here.

Proposition 5.3 The identity functors induce a Quillen pair

C†
op

W � C†
op

T :

Since its proof is quite involved, for organizational purposes we first give the main
ingredients in Section 5.1 and then in Section 5.2 we return to some deferred technical
points.

5.1 Main outline of the proof

Since cofibrations are the same in both model structures, the left adjoint, as the identity
functor, preserves them. Thus, our strategy to complete the proof is to verify that every
W–local equivalence is a T–local equivalence.

It suffices to show that the right adjoint, also the identity, preserves fibrant objects.
Indeed, if A is T–local, and hence W–local, and f W Y !Y 0 is a W–local equivalence,
it follows that the induced map

Maph.Y 0;A/!Maph.Y;A/

is a weak equivalence in C , and therefore f is also a T–local equivalence. Thus, to
complete the proof of Theorem 5.1 we only need the following result, whose proof is
technical and occupies the remainder of the section:

Proposition 5.4 Any T–local object of C†op
is W –local.

The key step is to prove that S� preserves fibrant objects, as made precise by the
following proposition:

Proposition 5.5 If Y is a T–local object in C†op
, then S�Y is S–local.

We already know from Proposition 5.2 that S� preserves injectively fibrant objects.
Therefore, to prove Proposition 5.5, it suffices to show that S�.Y / is a 2–Segal object
and therefore S–local.

To prove this result, which is the content of the next proposition, we need to know that
certain maps are acyclic cofibrations in C†op

T . To improve readability we have deferred
these results to Section 5.2.
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Proposition 5.6 If an object Y of C†op
is T–local , then S�Y is a 2–Segal object.

Proof This argument is inspired by the proof of [11, Proposition 2.4.8]. Recall from
Proposition 1.18 that to check 2–Segality it suffices to consider a decomposition P

which is either the decomposition of the .nC1/–gon into a triangle f0; 1; 2g and
the remaining n–gon, or the decomposition into a triangle fn� 2; n� 1; ng and the
remaining n–gon.

Consider the former case; the other decomposition can be treated similarly. We need to
check that the 2–Segal map

Maph.�Œn�;S�Y /!Maph.�ŒP �;S�Y /;

with the derived mapping spaces taken in the injective model structure, is a weak
equivalence.

Let us begin by looking at similar derived mapping spaces for the original object Y .
We prove in Lemma 5.9 that the inclusion WŒP � ,!WŒn� is an acyclic cofibration,
and in particular a weak equivalence, in C†op

T . Since Y is T–local, by definition the
induced map

Maph.WŒn�;Y /!Maph.WŒP �;Y /

is a weak equivalence. Moreover, since Y is injectively fibrant and all objects are
cofibrant, this weak equivalence can be realized by underived mapping spaces

MapC†op .WŒn�;Y /!MapC†op .WŒP �;Y /:

Applying the isomorphisms P�Œn�ŠWŒn� of Remark 2.17 and the definition of WŒP �,
we can rewrite this weak equivalence as

MapC†op .P�Œn�;Y /!MapC†op .P�ŒP �;Y /;

to which we can apply the adjunction .P;S�/ to obtain the weak equivalence

MapC�op .�Œn�;S�Y /!MapC�op .�ŒP �;S�Y /:

By inspection, this map is precisely the one induced by fP W�ŒP � ! �Œn� from
Definition 4.1. Thus, it only remains to verify that S�.Y / is injectively fibrant, so
that this map realizes the corresponding map on derived mapping spaces, which is
precisely the 2–Segal map. However, Y is injectively fibrant as a T–local object, and
therefore S�.Y / is also injectively fibrant by Proposition 5.2. We conclude that S�Y

is 2–Segal.
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Now that we have proved Proposition 5.5, we use it to prove Proposition 5.4.

Proof of Proposition 5.4 Let Y be a T–local object and let P be the decomposition
of the .nC1/–gon into a triangle f0; 1; 2g and the remaining n–gon or into a triangle
fn� 2; n� 1; ng and the remaining n–gon, as in Proposition 1.18. Consider the map

fP W�ŒP �!�Œn�

corresponding to this decomposition. We want to prove that Y is fPfP g–local.

Since S�Y is S–local by Proposition 5.5, the map

.fP /
�
WMaph.�Œn�;S�Y /!Maph.�ŒP �;S�Y /

is a weak equivalence. Using similar manipulations between derived and underived
mapping spaces and the adjunction .P;S�/ as in the proof of Proposition 5.6, we obtain
that the map

.PfP /
�
WMaph.WŒn�;Y /!Maph.WŒP �;Y /

is a weak equivalence, as desired.

5.2 Acyclicity results

In this section, we return to some technical results that were deferred, most importantly
Lemma 5.9, which was used in the proof of Proposition 5.6.

Lemma 5.7 For i D 0; 1, the map fi W WŒ1� Pd1

��!WŒ2�!WŒ2�qi
WŒ1� WŒ0�, whose

image is displayed with red dotted arrows in

� �

�

�

�

� �

�

for i D 0; 1, respectively, is an acyclic cofibration in C†op

T .

Proof We prove that f1 is an acyclic cofibration; the proof for f0 is similar. Write
f1 as the composite

WŒ1� ,!H Œ1�q†Œ0;0� WŒ2�q1
WŒ1� WŒ0�!WŒ2�q1

WŒ1� WŒ0�;
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depicted by
�

� ,!

�

� �

�

�

!

�

� �

�

We claim that both are weak equivalences.

The first map is obtained by the following several steps: First we fill the cospan formed
by the unique vertical morphism and the identity on the target to a square. Then we
add a horizontal augmentation for the newly added object. Finally, we add a horizontal
composite of the augmentation map and the top vertical source in the square. Each of
these steps is implemented by taking a pushout along an acyclic cofibration, and the
resulting inclusion is therefore a T–local equivalence.

The second map is obtained by identifying the copy of H Œ1� at the top with the
composition of the two horizontal maps in the copy of WŒ2�. It can be depicted as

�!�

�

It is a left inverse of the inclusion H Œ1� ,!H Œ1�q†Œ0;0�H Œ1� depicted by

� ,! �

�

which is a T–local equivalence. Applying the two-out-of-three property finishes the
proof.

For the remainder of this section, we prove acyclicity results for maps induced by
decomposing polygons. Let us first set some notation.

Notation 5.8 Let P be the decomposition of the .nC1/–gon into the triangle f0; 1; 2g
and the remaining n–gon, as in Proposition 1.18. Denote by H ŒP � the first row of WŒP �,
namely the preaugmented bisimplicial set given by

H ŒP � WDWŒP �\H Œn��WŒn�:

The description of WŒP � as a pushout from Definition 4.6 restricts to an isomorphism

H ŒP �ŠH Œ2�qH Œ1�H Œn� 1�:

Lemma 5.9 For any decomposition P as described above , the inclusion

WŒP � ,!WŒn�

is an acyclic cofibration in C†op

T .
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The proof of Lemma 5.9 boils down to the following two technical results and their
respective duals, whose proofs are similar.

Lemma 5.10 Let P be the decomposition of the .nC1/–gon into a triangle f0; 1; 2g
and the remaining n–gon. The inclusion H ŒP � ,! H Œn� is an acyclic cofibration
in C†op

T .

Proof We want to prove that the canonical inclusion H ŒP � ,! H Œn� is an acyclic
cofibration by realizing it as a pushout along an acyclic cofibration. First, a standard
argument for Segal objects can be used to show that the generalized Segal maps

.bh; eh/ W†Œ0; k�q†Œ0;0�†Œ0; n� k�!†Œ0; n�

are T–local equivalences.

Then we observe that †Œ0; n� contains a copy of †Œ0; n� 1�, highlighted in red, and a
copy of †Œ0; 2� given highlighted in dashed blue, which overlap on a copy of †Œ0; 1�,

: : :

The induced morphism

†Œ0; 2�q†Œ0;1�†Œ0; n� 1�!†Œ0; n�

is an acyclic cofibration, as can be observed from the commutative diagram

†Œ0; 2�q†Œ0;1�†Œ0; n� 1� †Œ0; n�

†Œ0; 2�q†Œ0;1�†Œ0; 1�q†Œ0;0�†Œ0; n� 2� †Œ0; 2�q†Œ0;0�†Œ0; n� 2�

idt.bh;eh/'

Š

'.bh;eh/

where the vertical morphisms are induced by generalized Segal maps in the second
variable and the bottom map is a canonical isomorphism.

Recall that H ŒP � Š H Œ2�qH Œ1� H Œn � 1�. Since there is an inclusion †Œ0; k� ,!

H Œk�D†Œ0; k�q†Œ0;0�H Œ0� for every k , these maps induce the top horizontal map in
the following pushout square:

†Œ0; 2�q†Œ0;1�†Œ0; n� 1� H Œ2�qH Œ1�H Œn� 1�

†Œ0; n� H Œn�
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Note that both horizontal maps are the identity on the underlying bisimplicial subsets
of †Œ0; n�. In particular, the canonical inclusion H ŒP � ,!H Œn� is a pushout along an
acyclic cofibration and hence is an acyclic cofibration itself.

The second fact we need is an analogue of [11, Lemma 2.4.9].

Lemma 5.11 The inclusion H Œn� ,!WŒn� is an acyclic cofibration C†op

T .

Proof We prove by induction on n� 0 that WŒn� can be built out of H Œn� by taking
pushouts along basic acyclic cofibrations. When nD 0, the inclusion H Œ0� ,!WŒ0� is
the identity of †Œ�1�, so there is nothing to prove.

Now suppose n> 0. Define a filtration of preaugmented bisimplicial sets

H Œn�� F .0/ � F .1/ � � � � � F .n/ ŠWŒn�

in which all the inclusions are acyclic cofibrations. For nD 4, this filtration can be
depicted as follows:
�

j0

�

�

�

�

j1

�

�

�

�

j2

�

�

�

�

j3

�

�

�

�

j4

�

�

�

�

�

Let us describe this filtration more precisely:

� Define F .0/ to be the preaugmented bisimplicial set obtained from H Œn� by ad-
joining a copy of WŒn� 1� along the first n� 1 arrows. More precisely, F .0/ can be
written as a pushout

F .0/ WDWŒn� 1�qH Œn�1�H Œn�;

which is depicted as in the codomain of the map j0 above when nD 4. The inclusion
of H Œn� into F .0/ can be written in the form

H Œn�ŠH Œn� 1�qH Œn�1�H Œn� ,!WŒn� 1�qH Œn�1�H Œn�D F .0/;

which is an acyclic cofibration by our inductive hypothesis.
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� For each 1�m� n� 1, we obtain F .m/ from F .m�1/ by adjoining a new square
and all horizontal and vertical composites with preexisting squares. When nD 4, this
process can be visualized via the maps j1 , j2 and j3 in the diagram above.

In order to build F .m/ explicitly, we need several steps: (1) complete a span to a square,
(2) add its horizontal composites, (3) add its vertical composites, and (4) make sure
that the interchange law holds. We use a further filtration

F .m�1/
� F .m�1;1/

� F .m�1;2/
� F .m�1;3/

� F .m�1;4/
DW F .m/;

to encode these steps, in such a way that the inclusions are all acyclic cofibrations. We
now describe this filtration more precisely:

(1) To obtain F .m�1;1/ from F .m�1/ , we complete the relevant span to a square,
obtaining the mth square in the last column. (We refer back to the above diagrams
to identify the appropriate spans to the right.) More precisely, it is given as a
pushout

F .m�1;1/
WD F .m�1/

q†Œ0;1�q†Œ0;0�†Œ1;0�†Œ1; 1�;

which implies that the inclusion

F .m�1/ ,! F .m�1;1/

is an acyclic cofibration.

(2) To obtain F .m�1;2/ from F .m�1;1/ , we want to include all horizontal composites
involving the new square. This step can be described as a pushout

F .m�1;2/
WD F .m�1;1/

q†Œ1;n�m�1�q†Œ1;0�†Œ1;1�†Œ1; n�m�;

and the inclusion
F .m�1;1/ ,! F .m�1;2/

is therefore an acyclic cofibration.

(3) Similarly, we obtain F .m�1;3/ from F .m�1;2/ by adding all vertical composites
involving the new square, a process given by the pushout

F .m�1;3/
WD F .m�1;2/

q†Œm�1;1�q†Œ0;1�†Œ1;1�†Œm; 1�;

and the inclusion
F .m�1;2/ ,! F .m�1;3/

is again an acyclic cofibration.
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(4) Finally, we obtain F .m/ WD F .m�1;4/ from F .m�1;3/ by gluing a rectangular
grid to ensure compatibility of the two types of composition, as described
in Remark 2.4. This step can be described as a pushout of F .m�1;3/ with
†Œm; n�m� along their intersection. The inclusion

F .m�1;3/ ,! F .m�1;4/

is therefore an acyclic cofibration.

� Returning to our original filtration, we now obtain F .n/ from F .n�1/ by adding
a new element to the augmentation and all vertical composites in the last column, as
depicted in the codomain of the map j4 in the diagram above when nD 4. This step
is described by a pushout

F .n/ WD F .n�1/
q†Œn�1;0� V Œn�;

and therefore the inclusion of
F .n�1/ ,! F .n/

is an acyclic cofibration.

Finally, by direct verification one can check that WŒn�Š F .n/ , which concludes the
proof.

Proof of Lemma 5.9 We need to prove that the map WŒP �! WŒn� is an acyclic
cofibration in C†op

T . Since it is an inclusion, we need only show that it is a weak
equivalence.

Consider the commutative diagram of inclusions

H ŒP � WŒP �

H Œn� WŒn�

in which the left-hand vertical map is a weak equivalence by Lemma 5.10 and the
bottom horizontal map is a weak equivalence by Lemma 5.11. To prove our desired
result, it suffices to prove that the top horizontal map is a weak equivalence.

We observed in Definition 4.6 that WŒP � can be obtained as a pushout of WŒ2� and
WŒn� 1� along WŒ1�, and similarly H ŒP � can be obtained as a pushout of H Œ2� and
H Œn � 1� along H Œ1�. Since these pushouts are taken along cofibrations, they are
homotopy pushouts, and thus the weak equivalences of Lemma 5.11 assemble into the
upper horizontal map being a weak equivalence.
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6 The Quillen equivalence

We are now ready to prove the main result of this paper, namely that the Quillen pair
from Theorem 5.1 is indeed a Quillen equivalence.

Theorem 6.1 The path construction and the S�–construction induce a Quillen equiva-
lence

P W C�
op

S � C†
op

T WS�:

Our strategy for the proof is to show that

� the functor P reflects weak equivalences, and

� for every fibrant object Y of C†op

T , the counit of the map PS�Y ! Y is a weak
equivalence.

These conditions constitute the characterization of Quillen equivalences from [21,
Corollary 1.3.16] in the special case when all objects are cofibrant. The former statement
appears in the next proposition, while the latter is given as Proposition 6.5 below.

Proposition 6.2 The path construction functor

P W C�
op

S ! C†
op

T

reflects weak equivalences.

Before embarking on the proof, we show that, while P does not preserve fibrant objects,
it does so up to injective fibrant replacement.

Notation 6.3 If Y is an object of C†op
, we denote by Y f a functorial fibrant re-

placement of Y in the injective model structure. In particular, the accompanying map
Y ! Y f is a levelwise weak equivalence.

Lemma 6.4 If X is a fibrant object of C�op

S , then .PX /f is fibrant in C†op

T .

Proof As .PX /f is by definition injectively fibrant, we only need to prove that
.PX /f is T–local. We verify that the map

Maph.†Œ1; 1�; .PX /f /!Maph.†Œ1; 0�q†Œ0;0�†Œ0; 1�; .PX /f /;

induced by
�1;1
W†Œ1; 0�q†Œ0;0�†Œ0; 1� ,!†Œ1; 1�;

as described in Definition 4.4, is a weak equivalence. The other cases are similar; in
particular, Proposition 4.3 can be used to verify locality with respect to Taug .
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Since X is S–local, the 2–Segal map

X3
.d2;d0/
�����!X2

h
�X1

X2:

is a weak equivalence. Using the definition of the functor P, we can rewrite this map as

.PX /1;1! .PX /1;0
h
�.PX /0;0

.PX /0;1

induced by �1;1 . Since the injective fibrant replacement .PX /f of PX is levelwise
weakly equivalent to PX, the map

.PX /
f
1;1
! .PX /

f
1;0

h
�
.PX /

f

0;0

.PX /
f
0;1

is also a weak equivalence. But this weak equivalence can be identified with the map

Map.†Œ1; 1�; .PX /f /

Map.†Œ1; 0�; .PX /f /
h
�Map.†Œ0;0�;.PX /f / Map.†Œ0; 1�; .PX /f /

which in turn is the map

Map.†Œ1; 1�; .PX /f /!Map.†Œ1; 0�q†Œ0;0�†Œ0; 1�; .PX /f /

induced by �1;1 . Because .PX /f is injectively fibrant, this map models a weak
equivalence on derived mapping spaces,

Maph.†Œ1; 1�; .PX /f /!Maph.†Œ1; 0�q†Œ0;0�†Œ0; 1�; .PX /f /:

Hence .PX /f is local with respect to this map, as desired.

Proof of Proposition 6.2 Suppose that g WX ! X 0 is a map in C�op
such that

Pg W PX ! PX 0 is a weak equivalence in C†op

T . We want to show that g is a weak
equivalence in C�op

S .

Assume first that X and X 0 are S–local. By Lemma 6.4, the injectively fibrant replace-
ments .PX /f and .PX 0/f are T–local. Moreover, .Pg/f is a weak equivalence
in C†op

T . In particular, .Pg/f is a T–local equivalence between T–local objects, so it
is a levelwise weak equivalence. In the commutative diagram

PX PX 0

.PX /f .PX 0/f

Pg

.Pg/f

the vertical maps are also levelwise weak equivalences, so Pg is must be as well.
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Finally, given that Pg is a levelwise weak equivalence, the map g0 D .Pg/�1 is a
weak equivalence, and, similarly, for every n we get that gn D .Pg/n�1;0 is a weak
equivalence. We conclude that g is a levelwise weak equivalence, and in particular an
S–local equivalence, as desired.

For arbitrary X and X 0, let �.�/ W C�op

S ! C�
op

S

denote a functorial fibrant replacement. Then g and Pg fit into commutative diagrams

X X 0

zX zX 0

'S

g

'S

zg

 
PX PX 0

P zX P zX 0

'T

Pg

'T

P zg

where we use from Theorem 5.1 that the image of a weak equivalence in C†op

T under P
is a weak equivalence in C�op

S .

Suppose that Pg is a weak equivalence in C†op

T . Then P zg is a also a weak equivalence
in C†op

T . By the previous argument, zg is a weak equivalence in C�op

S , from which we
can conclude that g is also, as desired.

It remains to prove the aforementioned condition on the counit.

Proposition 6.5 If Y is a fibrant object of C†op

T , then the counit map

�Y W PS�Y ! Y

is a levelwise weak equivalence , and therefore a weak equivalence in C†op

T .

We need a preliminary result, which roughly says that, in the T–localized model
structure, WŒqC 1C r � is weakly equivalent to the copy of †Œq; r � contained inside of
it. The argument is similar to that of Lemma 5.11.

Lemma 6.6 The inclusion †Œq; r � ,!WŒqC 1C r � is an acyclic cofibration in C†op

T .

Proof This inclusion fits into a commutative diagram of inclusions of the form

†Œq; r � WŒqC 1C r �

†Œq; 0�q†Œ0;0�†Œ0; r � V ŒqC 1�q†Œ0;0�†Œ0; r � WŒqC 1�q†Œ0;0�†Œ0; r �

Algebraic & Geometric Topology, Volume 21 (2021)



2–Segal objects and the Waldhausen construction 1321

The left-hand vertical map is an element of Tstable . The left-most bottom horizontal
map is a pushout along the map †Œq; 0� ,! V ŒqC 1� in Taug . The right-most bottom
horizontal map is a pushout along the map V ŒqC1� ,!WŒqC1�, which can be proven to
be an acyclic cofibration by dualizing the argument from Lemma 5.11. The right-hand
vertical map fits into a commutative diagram of inclusions of the form

H ŒqC 1�q†Œ0;0�†Œ0; r � H ŒqC 1C r �

WŒqC 1�q†Œ0;0�†Œ0; r � WŒqC 1C r �

where the two vertical maps are weak equivalences by Lemma 5.11 and the top map
can be written as a pushout along a map in TSegal .

Proof of Proposition 6.5 We first observe that the precomposition functor P D p�

admits a C–enriched left adjoint

p! W C†
op
! C�

op
;

which is given by left Kan extension [25, Theorem 4.50]. Since left Kan extensions are
well behaved on representables [30, Section 7.7], there are isomorphisms

p!†Œq; r �Š�ŒqC 1C r � and p!†Œ�1�Š�Œ0�:

The counit map evaluated at .q; r/,

�Y W .p
�p�Y /q;r ! Yq;r ;

can be identified with a map

MapC†op .†Œq; r �;p�p�Y /!MapC†op .†Œq; r �;Y /

via the enriched Yoneda lemma. Using the fact that P D p� and S� D p� are right
adjoints (of p! and p�, respectively) the left-hand side in the above map can be identified
with

MapC†op .†Œq; r �;p�p�Y /ŠMapC†op .p�p!†Œq; r �;Y /:

Applying Remark 2.17 and our adjunctions, we have that

WŒqC 1C r �Š P�ŒqC 1C r �Š Pp!†Œq; r �D p�p!†Œq; r �;

hence the mapping space can further be identified with

MapC†op .p�p!†Œq; r �;Y /ŠMapC†op .WŒqC 1C r �;Y /
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and the map above can be identified with

MapC†op .WŒqC 1C r �;Y /!MapC†op .†Œq; r �;Y /

induced by the inclusion †Œq; r � ,!WŒqC1C r �. Since Y is fibrant in C†op

T , this map
models the analogous map on derived mapping spaces, which is a weak equivalence by
Lemma 6.6. The �1–component can be treated similarly.

7 Variants of the model structures

We conclude with some illustrations that the techniques employed in the paper are
quite flexible and can be used to obtain further results along the same lines. Indeed, by
performing enriched localizations with respect to different sets of maps, or by localizing
the projective model structure instead of the injective model structure, we can obtain
variants of Theorem 6.1.

7.1 Alternative localizations

In applications one might have further properties on 2–Segal objects and might wonder
how to translate them to the context of augmented double Segal objects. We consider
two natural such conditions here.

Reduced and pointed settings While the augmentation condition for stable double
Segal objects might seem complicated, it is intended to serve as an appropriate gen-
eralization of zero objects. For augmented stable double Segal objects coming from
pointed contexts, such as those from Section 3.2, the augmentation represents a space
of zero objects, and is therefore contractible. We can restrict ourselves to this setting
as follows.

Definition 7.1 A stable pointed double Segal object in C is an augmented stable
double Segal object Y such that the map

Y�1!�

to the terminal object is a weak equivalence in C .

For 2–Segal objects, the analogous property was considered in [6, Definition 1.9] in
the case where C D Set , but it can be generalized as follows.

Definition 7.2 A simplicial object X in C is reduced if the map from X0 to the
terminal object in C is a weak equivalence in C .

Algebraic & Geometric Topology, Volume 21 (2021)



2–Segal objects and the Waldhausen construction 1323

By means of Theorem 1.11, there are model structures on C�op
and on C†op

whose
fibrant objects are reduced 2–Segal objects and pointed stable double Segal objects,
respectively.

Segal objects We know that every Segal object is 2–Segal, so we can ask how to
identify the corresponding preaugmented bisimplicial objects. In the context of reduced
Segal objects, as just discussed, they can be described in terms of homological algebra,
as we now explain.

Let us consider the following condition. Given an augmented stable double Segal
object Y , there is a natural notion of an object of extensions in Y , in the form of
distinguished squares in which the left bottom corner is a zero object, realized as a
homotopy pullback

Y1;1
h
�Y0;0

Y�1:

This definition recovers, in particular, the groupoid of exact sequences in an exact
category, as well as the space of fiber sequences in a stable .1; 1/–category.

As in homological algebra, a natural question is whether all the extensions in Y split.
We thus make the following definition:

Definition 7.3 A stable pointed double Segal object Y in C is split if the map

.sv ı sh ı pr1; tv ı th ı pr1/ W Y1;1
h
�Y0;0

Y�1! Y0;0 �Y0;0

is a weak equivalence.

Remark 7.4 Let us give some heuristic motivation for this definition. We would like
to encode the structure of Y D P.X / for a given Segal object X. It is not hard to show
that a 2–Segal object is Segal if and only if the Segal map X2

.d2;d0/
�����!X1�

h
X0

X1 is an
equivalence. While we would like to translate this condition to Y , the maps d2 and d0

have different domains there (namely, d2 W Y0;1 ! Y0;0 and d0 W Y1;0 ! Y0;0 ) and
hence cannot be combined to a single map. Instead, we use the following reformulation:
since X is reduced, we have a weak equivalence

X3
h
�X1

X0
'
�!X2:

Hence, we can identify the map from Definition 7.3 in this case with

X3
h
�X1

X0!X1
h
�X0

X1

and require it to be a weak equivalence.

Proposition 7.5 The generalized S�–construction induces Quillen equivalences

P W C�
op � C†

op
WS�
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� between the model structure for reduced 2–Segal objects and the model structure
for stable pointed double Segal objects; and

� between the model structure for reduced Segal objects and the model structure
for split stable pointed double Segal objects.

7.2 Localizations of the projective model structure

The examples of augmented stable double Segal spaces provided in Sections 3.1 and 3.2
are levelwise Kan complexes, and in particular fibrant in the projective model structure.
Since it is a stronger condition to be injectively fibrant, working in that context presents
a potential obstruction to finding natural examples of T–local objects. As an example
coming from bordisms, one can construct a homotopical version of the 2–Segal set
of bordisms with genus constraints from [6, Examples 2.2 and 7.2] using methods
from [9].

For this reason, we also want a model structure for augmented stable double Segal
objects obtained as a localization of the projective model structure, so that the fibrant
objects are precisely the levelwise fibrant augmented stable double Segal objects. We
can obtain the same kind of variant to get levelwise fibrant 2–Segal objects.

By an analogue of [20, Theorem 3.3.20], the identity functors realize Quillen equiva-
lences

id W C�
op

proj;S � C�
op

inj;S Wid and id W C†
op

proj;S � C†
op

inj;S Wid:

Combining these equivalences with the ones from our main result, we obtain the
following comparisons:

Proposition 7.6 There is a zigzag of Quillen equivalences

C�op

inj;S C†op

inj;T

C�op

proj;S C†op

proj;T

id

P

S�

idid id
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